Math, asked by CopyThat, 3 days ago

If x^2 -5x + 1 = 0, find x^10 + 1/x^5 has the value ?
A) 2524 (B) 2525
(C) 2424 (D) 2010

Answers

Answered by ajr111
9

Answer:

(B) 2525 is the correct answer

Step-by-step explanation:

Given :

x² - 5x + 1 = 0

To find :

The value of  \mathrm{\dfrac{x^{10} + 1}{x^5}} from the options

(A) 2524

(B) 2525

(C) 2424

(D) 2010

Solution :

x² - 5x + 1 = 0

=> x² + 1 = 5x

Dividing both sides by x

\implies \mathrm{\dfrac{x^2+1}{x} = 5 }

\implies \mathrm{x + \dfrac{1}{x} = 5 }   ____ [1]

Squaring on both sides, we get

\implies \mathrm{\bigg(x + \dfrac{1}{x} \bigg)^2= 5^2 }

\implies \mathrm{x^2 + \dfrac{1}{x^2} + 2 = 25 }

\implies \mathrm{x^2 + \dfrac{1}{x^2} = 25 -2 }

\implies \mathrm{x^2 + \dfrac{1}{x^2} = 23 }  ____ [2]

Cubing [1] on both sides

\implies \mathrm{\bigg(x + \dfrac{1}{x}\bigg)^3 = 5^3 }

\implies \mathrm{x^3 + 3x + \dfrac{3}{x} + \dfrac{1}{x^3} = 125 }

\implies \mathrm{x^3 + 3\bigg(x + \dfrac{1}{x} \bigg)+ \dfrac{1}{x^3} = 125 }

\implies \mathrm{x^3 + 3(5)+ \dfrac{1}{x^3} = 125 }  ____ [From [1]]

\implies \mathrm{x^3 +  \dfrac{1}{x^3} = 125 -15 }

\implies \mathrm{x^3 +  \dfrac{1}{x^3} = 110 }  ____ [3]

Now, multiply [2] and [3]

\implies \mathrm{\bigg(x^2 + \dfrac{1}{x^2}\bigg)\bigg(x^3 +  \dfrac{1}{x^3} \bigg)= 23 \times 110}

\implies \mathrm{\bigg(x^5 + x + \dfrac{1}{x} + \dfrac{1}{x^5} \bigg)= 2530}

From [1],

\implies \mathrm{\bigg(x^5 + 5 + \dfrac{1}{x^5} \bigg)= 2530}

\implies \mathrm{x^5 + \dfrac{1}{x^5}= 2530 - 5}

\implies \mathrm{x^5 + \dfrac{1}{x^5}= 2525}

\therefore \underline{\boxed{\mathbf{\dfrac{x^{10} + 1}{x^5}= 2525}}}

Hope it helps!!

Answered by Anonymous
3

Answer:

If x^2 -5x + 1 = 0, find x^10 + 1/x^5 has the value ?

A) 2524 (B) 2525

(C) 2424 (D) 2010

Step-by-step explanation:

Similar questions