If x = (2√6) / (√3 + √2), then the value of (x + √2) / (x - √2) + (x + √3) / (x - √3) is?
Answers
Answered by
25
x = (2√6)/(√3 +√2)
x +√2 = 2√6/(√3+√2) +√2
=(2√6 +√6 +2)/(√3 +√2)
=(3√6+2)/(√3+√2)
x-√2 =(2√6 -√6-2)
=(√6 -2)
(x +√2)/(x-√2) = (3√6+2)/(√6-2)
again,
(x +√3) =(2√6 +3+√6)
=(3√6+3)
(x-√3)=(2√6-3-√6)
=(√6-3)
(x+√3)/(x-√3) =(3√6+3)/(√6-3)
(x +√2)/(x -√2) +(x +√3)/(x -√3)
=(3√6+2)/(√6-2)+ (3√6+3)/(√6-3)
={18 +2√6 -9√6-6+18+3√6-6√6-6}/(√6-2)(√6-3)
={36-12 -10√6}/(6-5√6+6)
=(24-10√6)/(12-5√6)
=2 (answer)
x +√2 = 2√6/(√3+√2) +√2
=(2√6 +√6 +2)/(√3 +√2)
=(3√6+2)/(√3+√2)
x-√2 =(2√6 -√6-2)
=(√6 -2)
(x +√2)/(x-√2) = (3√6+2)/(√6-2)
again,
(x +√3) =(2√6 +3+√6)
=(3√6+3)
(x-√3)=(2√6-3-√6)
=(√6-3)
(x+√3)/(x-√3) =(3√6+3)/(√6-3)
(x +√2)/(x -√2) +(x +√3)/(x -√3)
=(3√6+2)/(√6-2)+ (3√6+3)/(√6-3)
={18 +2√6 -9√6-6+18+3√6-6√6-6}/(√6-2)(√6-3)
={36-12 -10√6}/(6-5√6+6)
=(24-10√6)/(12-5√6)
=2 (answer)
Answered by
0
Answer:
Step-by-step explanation:
√write
Attachments:
Similar questions
Hindi,
8 months ago
Math,
8 months ago
Physics,
8 months ago
Social Sciences,
1 year ago
English,
1 year ago