Math, asked by satyam104, 1 year ago

If x^2-8x-1=0 then find the value of x^2+1/x^2

Answers

Answered by harvinder6
50

 {x}^{2}  - 1 = 8x \\    \frac{ {x}^{2} }{x}  -  \frac{1}{x}  = 8 \\ x -  \frac{1}{x }  = 8 \\ squaring \: both \: sides \\  {x}^{2}  +  \frac{1}{ {x}^{2} }   - 2 = 64 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 66
Answered by mindfulmaisel
20

Given:

x^{2} + \frac {1}{x^{2}}

and x^{2}-8x-1=0

To find:

The value of x^{2} + \frac {1} {x^{2}}

Answer:

The given equations is x^{2}-8x-1 = 0

We need to find the x^{2} + \frac {1} {x^{2}} = ?

x^{2}-8x-1 = 0

x^{2}-1 = 8x

\frac {x^{2}} {x} - \frac {1} {x} = 8

x - \frac {1}{x} = 8

Squaring on both sides

{x- \frac {1}{x}}^{2}= 8^{2}

x^{2} + \frac {1}{x^{2}} - 2=64

x^{2} + \frac {1}{x^{2}}= 64 - 2

x^{2} + \frac {1}{x^{2}} = 62

Similar questions