if x=2; a=1; b=3 then verify the identity (x+a)(x+b)=x2+(a+b)x+ab
Answers
Answered by
8
Step-by-step explanation:
Given -
x = 2
a = 1
b = 3
To show -
(x + a)(x + b) = x² + (a + b)x + ab
Now,
(2 + 1)(2 + 3) = (2)² + (1 + 3)2 + 1×3
= 3×5 = 4 + 8 + 3
= 15 = 15
LHS = RHS
Hence,
Proved..
Some related formulas -
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- (a + b)(a - b) = a² - b²
- (a + b)³ = a³ + 3a²b + 3b²a + b³
- (a - b)³ = a³ - 3a²b + 3b²a - b³
Answered by
15
Given:
x=2
a=1
b=3
To Verify:
We need to verify the identity (x+a) (x+b) = x^2+ (a+b)x + ab.
Solution:
(x+a) (x+b) = x^2+ (a+b)x + ab _____(1)
Substituting the given values in equation 1 we have,
(2 + 1) (2 + 3) = 2^2 + (1 + 3) × 2 + 1×3
(3) × (5) = 4 + (4) × 2 + 3
15 = 4 + 8 + 3
15 = 12 + 3
15 = 15
Therefore LHS = RHS
Hence verified!!
Similar questions