Math, asked by aditya4135, 17 days ago

If (x-2) and (x+3) are factor are x³ + ax²+bx-30 find a nad b

Answers

Answered by VεnusVεronίcα
4

Given:

(x – 2) and (x + 3) are the factors of x³ + ax² + bx – 30.

 \\

To find:

We've to find the values of 'a' and 'b'.

 \\

Required answer:

The value of 'a' and 'b' when (x – 2) and (x + 3) are the factors of the polynomial x³ + ax² + bx – 30 are 6 and 1 respectively.

 \\

Explaination:

(x – 2) and (x + 3) are the factors of x³ + ax² + bx – 30.

This means that 2, – 3 when substituted in the given polynomial, result to zero.

 \:

So, now let's substitute these values in the polynomial and get a linear equation :

 \:

For x = 2:

  \sf :  \implies \:  \:  {x}^{3}  + a {x}^{2}  + bx - 30 = 0

 \sf :  \implies \:  \:  {(2)}^{3}  + a {(2)}^{2}  + b(2) - 30 = 0

 \sf :  \implies \:  \: 8 + 4a + 2b - 30 = 0

 \sf :  \implies \:  \: 4a + 2b - 22 = 0 \:  \:  \:  \{dividing \: the \: whole \: by \: 2 \}

 \sf :  \implies \:  \: 2a + b = 11 \:  \:  \:

 \:

For x = 3:

 \sf :  \implies \:  \:  {x}^{3}  + a {x}^{2}  + bx + c = 0

 \sf :  \implies \:  \:  {( - 3)}^{3}  + a( - 3) ^{2}  + b( - 3) - 30 = 0

 \sf :  \implies \:  \:  - 27  + 9a - 3b - 30 = 0

 \sf :  \implies \:  \:    9a - 3b - 57 = 0

 \sf :  \implies \:  \:  9a - 3b = 57 \:  \:  \:  \{dividing \: the \: whole \: by \: 3 \}

 \sf :  \implies \:  \:   3a - b = 19 \:

 \:

The pair of linear equations in two variables are :

 \sf :  \implies \:  \: 2a + b = 11 \:  \:  \:  \dots \dots \:  {eq}^{n}  \{i \}

 \sf :  \implies \:  \:  3 a - b = 19 \:  \:  \:  \dots \dots \:  {eq}^{n }  \{ii \}

 \:

Getting the value of 'b' from eqⁿ{ii} :

 \sf :  \implies \:  \:  3a - b = 19

 \sf :  \implies \:  \: b = 3a - 19

 \:

Substituting this value of 'b' in eqⁿ{i} :

 \sf :  \implies \:  \:   2a  +  b = 19

 \sf :  \implies \:  \:  2a + ( 3a - 19) = 11

 \sf :  \implies \:  \:  2a  + 3 a - 19 = 11

 \sf :  \implies \:  \: 5  a = 19 + 11

 \sf :  \implies \:  \: 5a = 30

 \sf :  \implies \:  \: a =   \cancel\dfrac{30}{5}

 \sf :  \implies \:  \: \boxed{ \sf  \red{a = 6}}

 \:

Substituting the 'a' value in eqⁿ{ii} :

 \sf :  \implies \:  \:  3a - b = 19

 \sf :  \implies \:  \: 3(6) - b = 19

 \sf :  \implies \:  \: 18 - b = 19

 \sf :  \implies \:  \:  - b = 19 - 18

 \sf :  \implies \:  \:  - b = 1

  : \implies \:  \:  \boxed{ \sf \red{b =  - 1}}

Similar questions