If (x-2) and(X+3) are factors of x³+ax²+bx-30 find a and b
Answers
Answered by
20
Answer:
a=6 and b=-1
Step-by-step explanation:
p(x)=x3+ax2+bx-30
(x-2)=0
x=2
p(2)=0
=(2)^3+a(2)^2+b2-30=0
=8+4a+2b-30=0
=4a+2b=22. (divide by 2)
=2a+b=11 -eq.1
p(-3)=0
=(-3)^3+a(-3)^2+b×(-3)-30=0
=-27+9a-3b-30=0
=9a-3b-57=0
=3a-b-19=0
=3a-b=19 -eq.2
By elimination method
=2a+b=11
=3a-b=19
=5a=30
=a=6
3a-b=19
3×6-b=19
18-b=19
-b=19-18
-b=1
b=-1
To verify:
2a+b=11
2×6-1=11
12-1 =11
11=11. Verified
Similar questions