if (x-2) and (x+3) are factors of x³ + ax² +bx -30, finds a and b
Answers
Answered by
0
Answer:
a=6 , b= -1.
Step-by-step explanation:
f(x) = x^3+ax^2+bx-30
x-2=0
x=2
in f(x),
8+4a+2b-30=0
4a+2b=-22 ---------(1)
x+3=0
x=-3
in f(x),
-27+9a-3b-30=0
9a-3b=57 -----------(2)
by solving the linear equations we get
a=6
b= -1
Answered by
1
Answer:
Step-by-step explanation:
substitute x=2,x=-3
(2)^3+a(2)^2+b(2)=30
=8+4a+2b=30
=8+4a+2b-30=0
=-22+4a+2b=0
=4a+2b=22.
now substitute x=-3
(-3)^3+a(-3)^2+b(-3)=30
-27+9a-3b=30
=-27-30+9a-3b=0
=-57+9a-3b=0
=9a-3b=57.
ELIMINTION_
4a+2b=22
9a-3b=57
__________
Similar questions