Math, asked by ItsSmartyPayal, 9 months ago

If x=2 and x=3 are the roots of equation  3x^2\: -\: 2kx\: +\: 2m .

Find the value of k and m

it's urgent​

Answers

Answered by srestangshidebbiswas
1

Answer:

Given :

2 & 3 are the roots of the equation, 3x² - 2kx + 2m = 0.

_____________________________________________________________

To Find :

The value of k & m

_____________________________________________________________

If x = 2,

We get,

⇒ 3x² - 2kx + 2m = 0

⇒ 3(2)² - 2k(2) + 2m = 0

⇒ 3(4) - 4k + 2m = 0.

⇒ 12 - 4k + 2m = 0

⇒ -4k + 2m = -12

⇒ 2k - m = 6 ....(i)

__________________

If x = 3,

Then,

⇒ 3x² - 2kx + 2m = 0

⇒ 3(3)² - 2k(3) + 2m = 0

⇒ 3(9) - 6k + 2m = 0

⇒ 27 - 6k + 2m = 0

⇒ -6k + 2m = -27

⇒ 3k - m = 13. 5..(ii)

____________________

Subtracting equation (i) from (ii),

We get,

⇒ (3k - m) - (2k - m) = 13.5 - 6

⇒ 3k - m - 2k + m = 7.5

⇒ ∴ k = 7.5

_______________________

Substituting value of x in (i),

We get,

⇒ 2k - m = 6

⇒ 2(7.5) - m = 6

⇒ 15 - m = 6

⇒ -m = 6 - 15

⇒ -m = -9

⇒ ∴ m = 9

_____________________________________________________________

Hope it Helps

Answered by MysteryUnsolved
8

◦•●◉✿ - ANSWER - ✿◉●•◦

Given :

2 & 3 are the roots of the equation, 3x² - 2kx + 2m = 0.

✦✧✧ - ✧✧✦

To Find :

The value of k & m

✦✧✧ - ✧✧✦

If x = 2,

We get,

⇒ 3x² - 2kx + 2m = 0

⇒ 3(2)² - 2k(2) + 2m = 0

⇒ 3(4) - 4k + 2m = 0.

⇒ 12 - 4k + 2m = 0

⇒ -4k + 2m = -12

⇒ 2k - m = 6 ....(i)

✦✧✧ - ✧✧✦

If x = 3,

Then,

⇒ 3x² - 2kx + 2m = 0

⇒ 3(3)² - 2k(3) + 2m = 0

⇒ 3(9) - 6k + 2m = 0

⇒ 27 - 6k + 2m = 0

⇒ -6k + 2m = -27

⇒ 3k - m = 13. 5..(ii)

✦✧✧ - ✧✧✦

Subtracting equation (i) from (ii),

We get,

⇒ (3k - m) - (2k - m) = 13.5 - 6

⇒ 3k - m - 2k + m = 7.5

⇒ ∴ k = 7.5

✦✧✧ - ✧✧✦

Substituting value of x in (i),

We get,

⇒ 2k - m = 6

⇒ 2(7.5) - m = 6

⇒ 15 - m = 6

⇒ -m = 6 - 15

⇒ -m = -9

⇒ ∴ m = 9

HOPE IT HELPS

❤️❤️❤️

Similar questions
Math, 4 months ago