Math, asked by taniyaa55, 1 year ago

if x^2-bx/ax-c =m-1/m+1
has roots which are numerically equal but of opposite sign, then the value of'm'must be
(A) a-b/a+b
(B) a+b/a-b
(C) O
(D) 1
soneone please answer this​

Answers

Answered by MaheswariS
35

\textbf{Given:}

\dfrac{x^2-bx}{ax-c}=\dfrac{m-1}{m+1}

\textbf{To find:}

\text{The value of m}

\textbf{Solution:}

\text{Let the roots of the given quadratic equation be $\alpha$ and $-\alpha$}

\text{Consider,}

\dfrac{x^2-bx}{ax-c}=\dfrac{m-1}{m+1}

(m+1)(x^2-bx)=(ax-c)(m-1)

(m+1)x^2-b(m+1)x-a(m-1)x+c(m-1)=0

(m+1)x^2-[b(m+1)+a(m-1)]x+c(m-1)=0

\text{Now,}

\text{Sum of the roots=$\dfrac{-b}{a}$}

\implies\alpha+(-\alpha)=\dfrac{b(m+1)+a(m-1)}{m+1}

\implies\,0=\dfrac{bm+b+am-a}{m+1}

\implies\,bm+b+am-a=0

\implies\,bm+am=a-b

\implies\,m(a+b)=a-b

\implies\boxed{\bf\,m=\dfrac{a-b}{a+b}}

\therefore\textbf{Option (A) is correct}

Find more:

The equation whose roots are smaller by 1 than those of 2x2 – 5x + 6 = 0 is 

a) 2x^2– 9x + 13 = 0

b) 2x^2– x + 3 = 0 

c) 2x^2+ 9x + 13 = 0

d) 2x^2 + x + 3 = 0​

https://brainly.in/question/16821146

If alpha,beta are the roots of equation x^2-5x+6=0 and alpha > beta then the equation with the roots (alpha+beta)and (alpha-beta) is

https://brainly.in/question/5731128

1)If alpha and beta are zeroes of quadratic polynomial x2 -(k+6x)+2(2k-1) 

find k if alpha +beta=1/2alpha beta 

2)If alpha and beta are zeroes of x2-6x+a, find the value of a if 3alpha+2beta=20

https://brainly.in/question/16419985

Similar questions