Math, asked by ektapardhi3009, 6 months ago

If x^2+bx+c=0,x^2+cx+b=0(b is not equal to c)have a common root then b+c=

Answers

Answered by shadowsabers03
8

Let x_1 and x_2 be the roots of the equation x^2+bx+c=0. Then,

  • x_1+x_2=-b\quad\quad\dots(1)
  • x_1x_2=c\quad\quad\dots(2)

Let x_1 be the common root of both the equations. Then we get,

\longrightarrow (x_1)^2+bx_1+c=(x_1)^2+cx_1+b

[Both hand sides are individually equal to zero.]

\longrightarrow bx_1+c=cx_1+b

\longrightarrow(b-c)x_1=b-c

Since b\neq c,

\longrightarrow x_1=1

So from (2),

\longrightarrow x_2=c

And from (1),

\longrightarrow 1+c=-b

\longrightarrow\underline{\underline{b+c=-1}}

Hence -1 is the answer.

Similar questions