Math, asked by Skeshri3798, 1 year ago

If x= 2 cos t - cos 2t and y= 2 Sint - sin 2t then prove that dy/DX = tan (3t/2)

Answers

Answered by MaheswariS
19

\textbf{Given:}

x=2\,cos\,t-cos 2t\text{ and }y= 2\, Sin\,t-sin\,2t

\text{Then,}

\displaystyle\frac{dx}{dt}=-2\,sin\,t+2sin\,2t

\displaystyle\frac{dx}{dt}=2[sin\,2t-sin\,t]

\text{and}

\displaystyle\frac{dy}{dt}=2\,cos\,t-2cos\,2t

\displaystyle\frac{dy}{dt}=2[cos\,t-cos\,2t]

Now,\;\;\displaystyle\frac{dy}{dx}

=\displaystyle\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

=\displaystyle\frac{2[cos\,t-cos\,2t]}{2[sin\,2t-sin\,t]}

=\displaystyle\frac{cos\,t-cos\,2t}{sin\,2t-sin\,t}

\text{Using}

\boxed{\begin{minipage}{7cm}$\bf\,cosC-cosD=-2\,sin(\frac{C+D}{2})\,sin(\frac{C-D}{2})\\\\sinC-sinD=2\,cos(\frac{C+D}{2})\,sin(\frac{C-D}{2})$\end{minipage}}

=\displaystyle\frac{-2\,sin(\frac{t+2t}{2})\,sin(\frac{t-2t}{2})}{2\,cos(\frac{2t+t}{2})\,sin(\frac{2t-t}{2})}

=\displaystyle\frac{-\,sin\,\frac{3t}{2}\,sin\,\frac{-t}{2}}{cos\,\frac{3t}{2}\,sin\,\frac{t}{2}}

=\displaystyle\frac{sin\,\frac{3t}{2}\,sin\,\frac{t}{2}}{cos\,\frac{3t}{2}\,sin\,\frac{t}{2}}

=\displaystyle\frac{sin\,\frac{3t}{2}}{cos\,\frac{3t}{2}}

=\displaystyle\,tan\,\frac{3t}{2}

\implies\boxed{\bf\frac{dy}{dx}=tan\,\frac{3t}{2}}

Similar questions