Math, asked by anshulsood2826, 1 year ago

if x= 2 cos theta - cos 2 theta and y=2sin theta - sin 2theta then prove that dy/dx = tan (3 theta/2)

Answers

Answered by siddhant816
52
Hope you have understood
Attachments:
Answered by parmesanchilliwack
73

Answer:

x=2 cos\theta - cos 2\theta -------(1)

And,

y=2sin\theta - sin 2\theta   -----(2),

By differentiating equation (1) and (2) with respect to \theta,

We get,

\frac{dx}{d\theta}=-2 sin\theta + 2 sin 2\theta ------(3)

\frac{dy}{d\theta}=2 cos\theta - 2 cos 2\theta ------(4)

On dividing equation (4) by equation (3),

\frac{dy}{dx}=\frac{2 cos\theta - 2 cos 2\theta}{-2 sin\theta + 2 sin 2\theta}

=\frac{cos\theta - cos 2\theta}{sin 2\theta - sin \theta}

=\frac{2 sin(\frac{\theta+2\theta}{2}) sin (\frac{2\theta-\theta}{2})} {2 cos(\frac{\theta+2\theta}{2})sin (\frac{2\theta-\theta}{2})} }

=\frac{2 sin\frac{3\theta}{2}\times sin \theta}{2 cos \frac{3\theta}{2}\times sin \theta}

=\frac{sin \frac{3\theta}{2}}{cos \frac{3\theta}{2}}

=tan\frac{3\theta}{2}

Hence, proved.

Similar questions