If x^2 is a factor of ax^4+bx^3+cx^2+dx+e. show that a+c+e = b+d
Answers
Answer:
Given : x 2 – 1 is a factor of f(x) = ax 4 + bx 3 +cx 2 + dx + e
Now (x 2 – 1) can be written as (x + 1) (x – 1)
⇒ (x – 1) and (x + 1) are factors of f(x)
⇒ f(–1) = 0
⇒ a(–1)4 + b(–1)3 + c(–1)2 + d(–1) + e = 0
⇒ a – b + c – d + e = 0
⇒ a + c + e = b + d ..... (1)
and f (1) = 0
⇒ a(1)4 + b(1)3 + c(1)2 + d(1) + e = 0
⇒ a + b + c + d + e = 0
⇒ b + d + b + d = 0 ( from (1) )
⇒ 2 (b + d) = 0
⇒ b + d = 0 ..... (2)
from (1) and (2) we get
a + c + e = b + d = 0
if u like it then follow me and make sure you mark me as a brainliest answer.
Given:
x² -1 is a factor of P(x) = ax⁴ +bx³ + cx²+dx +e
if x² -1 is a factor of P(x) then P(±1) = 0
x² -1 = 0
or, x² = 1
or, x = ± 1
substituting value of x in P(X)
P(x) = ax⁴ +bx³ + cx²+dx +e
or, P(1) : a(1)⁴ + b(1)³ + c (1)²+dx + e = 0
or, P(1) : a + b +c+d+e = 0 ------- equ(1)
Simlarly,
P(-1) : a(-1)⁴ + b(-1)³ + c (-1)²+d(-1) + e = 0
or, P(-1): a -b +c-d + e = 0
or, P(-1): a + c+ e = b +d ------- equ(2)
From equ (1) & (2) , We get
a + c +e = b + d = 0