Math, asked by zuni8929, 1 year ago

If (x-2) is a factor of both x2+ax-6 and x2-9x+b,than find the value of a+b.

Answers

Answered by ahmad79
34

Sol: (x - 2) is a factor of x2 + ax - 6 ⇒ (2)2+ a(2) - 6 = 0 ⇒ 2a -2 = 0 ⇒ a = 1 (x - 2) is a factor of x2 - 9x + b ⇒ (2)2 - 9(2) + b = 0 ⇒ b - 14  = 0 ⇒ b = 14 a + b = 1 + 14 = 15.

Answered by parulsehgal06
2

Answer:

The value of a+b = 15.  

Step-by-step explanation:

Factor:

  • If (x-p) is the factor of f(x) = x²+ax+b then f(p) = 0

  Given mathematical expressions are

         x²+ax-6 and   x²-9x+b

    Let f(x) =  x²+ax-6 and g(x) = x²-9x+b

    Also given (x-2) is the factor of both f(x) and g(x).

     Consider f(x) = x²+ax-6

       Since, (x-2) is a factor of f(x) then f(2) = 0

                      f(2) = 0

            (2)²+2a-6 = 0

                4+2a-6 = 0

                   2a-2 = 0

                      2a = 2

                         a = 2/2

                         a = 1

    Consider, g(x) = x²-9x+b

    Since, (x-2) is a factor of g(x) then g(2) = 0

                     g(2) = 0

              x²-9x+b = 0

          (2)²-9(2)+b = 0

                4-18+b = 0

                  -14+b = 0

                         b = 14

           So, the values of a = 1 and b = 14

           then a+b = 1+14 = 15

   Hence, the value of a+b = 15.  

Know more about Algebraic expression:

https://brainly.in/question/21098904?referrer=searchResults

https://brainly.in/question/13423801?referrer=searchResults

Similar questions