Math, asked by vidu10, 1 year ago

if( x+2) is a factor of p(x)=ax^3+bx^2+x-6 and p(x) when divided by (x-2) leaves a reminder 4, prove that a=0 and b=2

Answers

Answered by HimanshuR
4
Hope this will help you
-----Please mark as brainliest-------
Attachments:

vidu10: thank you so much
HimanshuR: wlcm
HimanshuR: You can follow me
vidu10: i will surely mark it as brainlist ans
vidu10: and follow you
vidu10: can you solve another one plz
HimanshuR: which question
vidu10: its of remai der theoram
vidu10: you can search it
vidu10: arent you solving it plz its a request
Answered by Alia15
2
(x+2) is a factor of p(x)=ax³ + bx² + x - 6
Remainder = 4
Prove that, a=0 and b=2


(x + 2) is the factor of p(x) , and we know this is possible only when p(-2) = 0 So, p(-2) = a(-2)³ + b(-2)² - 2 - 6 = 0                   
            -8a + 4b - 8 = 0 
                   
            -8a + 4b = 8                

            -2a + b  = 2
            -2a - 2 + b = 0                  -------------(1)

Now, if p(x) is divided by (x -2) then it leaves remainder 4.
So, p(2) = a(2)³ + b(2)² + 2 - 6 = 4                  
                   8a + 4b - 4 = 4 
                 
                   8a + 4b  = 8 

                   2a + b    = 2
                   2a + 2 + 2a = 2
                   4a = 0                         -------------(2)
Solving equations (1) and (2), 
i) -2a + b - 2 = 0
   -2a + b       = 2
    b                = 2
ii) 4a = 0
       a = 0

Hence, proved.
Similar questions