Math, asked by Anonymous, 3 days ago

IF (X - 2) IS A FACTOR OF THE EXPRESSION 2X^3 + AX^2 + BX - 14 AND WHEN THE EXPRESSION IS DIVIDED BY (X - 3), IT LEAVES A REMINADER 52. FIND THE VALUES OF A AND B ?

Answers

Answered by CopyThat
122

Explanation :

Given :-

  • (x - 2) is a factor of the expression 2x³ + ax² + bx - 14.
  • When the expression is divided by (x - 3), it leaves a remainder 52.

To find :-

  • Values of a and b.

Solution :-

Let f(x) = 2x³ + ax² + bx - 14.

Since (x + 2) is a factor of f(x), we must have f(2) = 0.

Now, f(2) = 0:

⇒ [2 × 2³ + a × 2² + b × 2 - 14] = 0

⇒ [2 × 8 + a × 4 + 2b - 14] = 0

⇒ [16 + 4a + 2b - 14] = 0

⇒ [4a + 2b + 2] = 0

2a + b = -1  - (1)

Again, by remainder theorem, on dividing f(x) by (x - 3), we have f(3) as remainder.

∴ f(3) = 52

⇒ [2 × 3³ + a × 3² + b × 3 - 14] = 52

⇒ [2 × 27 + a × 9 + 3b - 14] = 52

⇒ [54 + 9a + 3b - 14] = 52

⇒ [40 + 9a + 3b] = 52

⇒ 9a + 3b = 12

3a + b = 4 - (2)

Solving (1) and (2) :

⇒ 2a + b = -1

⇒ 3a + b = 4

  • a = 5

⇒ 2a + b = -1

⇒ 2(5) + b = -1

  • 10 + b = -1
  • b = -11

∴ The values of a and b are 5 and -11 respectively.

Answered by amansharma264
61

EXPLANATION.

⇒ (x - 2) is a factor of the equation.

⇒ 2x³ + ax² + bx - 14.

As we know that,

⇒ (x - 2) is a factor of equation.

⇒ x - 2 = 0.

⇒ x = 2.

Put the value of x = 2 in the equation, we get.

⇒ 2(2)³ + a(2)² + b(2) - 14 = 0.

⇒ 16 + 4a + 2b - 14 = 0.

⇒ 4a + 2b + 2 = 0.

⇒ 2a + b + 1 = 0. - - - - - (1).

When the expression is divided by (x - 3) it leaves remainder 52.

As we know that,

⇒ (x - 3) is a factor of the equation.

⇒ x - 3 = 0.

⇒ x = 3.

Now, we can write equation as,

⇒ 2x³ + ax² + bx - 14 = 52.

⇒ 2(3)³ + a(3)² + b(3) - 14 = 52.

⇒ 54 + 9a + 3b - 14 = 52.

⇒ 9a + 3b + 40 = 52.

⇒ 9a + 3b + 40 - 52.

⇒ 9a + 3b - 12 = 0. - - - - - (2).

⇒ 3a + b - 4 = 0. - - - - - (2).

From equation (1) and (2), we get.

⇒ 2a + b + 1 = 0. - - - - - (1).

⇒ 3a + b - 4 = 0. - - - - - (2).

Subtract both the equation, we get.

⇒ 2a + b + 1 = 0. - - - - - (1).

⇒ 3a + b - 4 = 0. - - - - - (2).

⇒ -    -     +

We get,

⇒ - a + 5 = 0.

a = 5.

Put the values of a = 5 in the equation (1), we get.

⇒ 2a + b + 1 = 0.

⇒ 2(5) + b + 1 = 0.

⇒ 10 + b + 1 = 0.

⇒ b + 11 = 0.

b = - 11.

Values of a = 5  and  b = - 11.

Similar questions