If (x-2) is a factor of the expression 2xcube+axsquare+bx-14 and when the expression is divided by (x-3), it leaves a remainder 52, find the values a and b.
Answers
Answered by
22
hello...
p(x)= 2x³+ax²+bx-14
put (x-2) factor of p(x)
x-2=0
x=2
put x=2
2(2)³+a(2)²+b(2)-14=0
16+2a+2b-14=0
8+2a+2b-14=0
2a+b+1=0... eq 1
Now divide p(x) by x-3
(x-3)=0
x=3
Now put x=3
2(3)³+a(3)²+b(3)-14=52
2(27)+a(9)+b(3)-14=52
54+9a+3b-14=52
54+9a+3b-14-52=0
9a+3b-12=0
3a+b-4=0 .... eq 2
If you will subtract eq2 - eq1 You will get value of a that will be a-5
when u will have zero...
a-5=0
a=5
now you have to take a=5
2(5)+b(1)=0
10+b=0
b= -10
p(x)= 2x³+ax²+bx-14
put (x-2) factor of p(x)
x-2=0
x=2
put x=2
2(2)³+a(2)²+b(2)-14=0
16+2a+2b-14=0
8+2a+2b-14=0
2a+b+1=0... eq 1
Now divide p(x) by x-3
(x-3)=0
x=3
Now put x=3
2(3)³+a(3)²+b(3)-14=52
2(27)+a(9)+b(3)-14=52
54+9a+3b-14=52
54+9a+3b-14-52=0
9a+3b-12=0
3a+b-4=0 .... eq 2
If you will subtract eq2 - eq1 You will get value of a that will be a-5
when u will have zero...
a-5=0
a=5
now you have to take a=5
2(5)+b(1)=0
10+b=0
b= -10
Answered by
14
Let f(x) = 2x^3 + ax^2 + bx - 14.
x - 2 = 0
x = 2.
When f(x) is divided by (x - 2), remainder = f(2).
f(2) = 2(2)^3 + a(2)^2 + b(2) - 14 = 0
16 + 4a + 2b - 14 = 0
4a + 2b + 2 = 0
2a + b + 1 = 0
2a + b = -1. -------------- (1)
Now,
Given that when the expression is divided by (x-3), it leaves a remainder 52.
x - 3 = 0
x = 3.
f(3) = 2(3)^3 + a(3)^2 + b(3) - 14 = 52
= 2 * 27 + 9a + 3b - 14 = 52
= 54 + 9a + 3b - 14 = 52
= 9a + 3b + 40 = 52
= 9a + 3b = 52 - 40
= 3a + b = 4 --------------- (2)
On solving (1) & (2), we get
2a + b = -1
3a + b = 4
------------------
-a = -5
a = 5
Substitute b = 5 in (1), we get
2a + b = -1
2(5) + b = -1
10 + b = -1
b = - 1 - 11
b = -11.
Therefore the values of a = 5 and b = -11.
Hope this helps
x - 2 = 0
x = 2.
When f(x) is divided by (x - 2), remainder = f(2).
f(2) = 2(2)^3 + a(2)^2 + b(2) - 14 = 0
16 + 4a + 2b - 14 = 0
4a + 2b + 2 = 0
2a + b + 1 = 0
2a + b = -1. -------------- (1)
Now,
Given that when the expression is divided by (x-3), it leaves a remainder 52.
x - 3 = 0
x = 3.
f(3) = 2(3)^3 + a(3)^2 + b(3) - 14 = 52
= 2 * 27 + 9a + 3b - 14 = 52
= 54 + 9a + 3b - 14 = 52
= 9a + 3b + 40 = 52
= 9a + 3b = 52 - 40
= 3a + b = 4 --------------- (2)
On solving (1) & (2), we get
2a + b = -1
3a + b = 4
------------------
-a = -5
a = 5
Substitute b = 5 in (1), we get
2a + b = -1
2(5) + b = -1
10 + b = -1
b = - 1 - 11
b = -11.
Therefore the values of a = 5 and b = -11.
Hope this helps
siddhartharao77:
If possible brainliest it. Thanks
Similar questions