Math, asked by senthikumarvn73, 9 months ago

if (x+2) is a factor of x^3-2ax^2+ax -2​

Answers

Answered by RISH4BH
169

\large{\underline{\underline{\red{\sf{Given: }}}}}

  • \tt{x+2\:is\:a\:factor\:of\:x^3-2ax^2+ax-2.}

\large{\underline{\underline{\red{\sf{To\:Find: }}}}}

  • \tt{The\:value\:of\:a .}

\large{\underline{\underline{\red{\sf{ Answer:}}}}}

\tt{Given\:that\:(x+2)\:is\:a\:factor\:of\:a\: polynomial.}\tt{So\:on\:putting\:x=(-2)\:whole\: polynomial}\tt{will\:become\: zero.}

\purple{\tt{\leadsto Here\:are\: the\:steps:}}

\tt{\orange{Step\:1\:\::-\:\green{Equate\:the\:factor\:with\:zero. }}}

\tt{\orange{Step\:2\:\::-\:\green{ Put\:that\:value\:in\:the\: polynomial.}}}

\tt{\orange{Step\:3\:\::-\:\green{ Equate\:the\: polynomial\:with\:0.}}}

\tt{\orange{Step\:4\:\::-\:\green{ Solve\:linear\:equ^n\:to\:find\:a.}}}

__________________________________________

\underline{\pink{\sf{\mapsto Following\:the\:above\:steps:-}}}

\tt{\implies x+2=0.}

\tt{\implies x =0-2.}

\underline{\boxed{\red{\bf{\dag \:\:\:\:x \:\:=\:\: (-2)\:\:\:\:}}}}

\underline{\blue{\sf{\mapsto Putting\:this\:value\:in\:the\:given\: polynomial:-}}}

\tt{\implies x^3-2ax^2+ax-2=p(x) \:\;[say].}

\tt{\implies (-2)^3-2\times(-2)^2\times a+a\times(-2)-2=0 .}

\tt{\implies -8-2\times4a-2a-2=0.}

\tt{\implies -10-8a-2a=0.}

\tt{\implies-10a-10=0 .}

\tt{\implies -10(a+1)=0.}

\tt{\implies (a+1)=\dfrac{0}{-10}.}

\tt{\implies a+1=0.}

\tt{\implies a=0-1 .}

\underline{\boxed{\red{\bf{\large{\dag} \:\:\:\:a \:\:=\:\: (-1)\:\:\:\:}}}}

\underset{\tt{\orange{Required\:Answer}}}{\pink{\underbrace{\underline{\underline{\blue{\sf{Hence\:value\:of\:a\:is\:1. }}}}}}}

Similar questions