If (x-2) is a factor of x^3-3x^4-ax^3+3ax^2+2ax-4 find the value of a
Answers
Solution:-
Given:-
- Polynomial:- (-3x⁴ + x³ -ax³ + 3ax² + 2ax - 4)
=) 3x⁴ - x³ + ax³ - 3ax² - 2ax + 4
- ( x - 2) is the Factor.
To Find:-
- Value of a = ?
Find:-
∵(x - 2) is the Factor of the given Polynomial.
=) x -2 = 0
=) x = 2
P(x) = 3x⁴ - x³ + ax³ - 3ax² - 2ax + 4
=) P(2) = 3(2)⁴ - (2)³ + a(2)³ - 3a(2)² - 2a(2) + 4
=) 0 = 3(16) - 8 + 8a - 3a(4) - 4a + 4
=) 0 = 48 - 4 + 4a - 12a
=) 0 = 44 - 8a
=) 8a = 44
=) a = 44/8
=) a = 5.5
Hence,
a takes the value of 5.5
Given :- (x-2) is a factor of x^3-3x^4-ax^3+3ax^2+2ax-4
To find :- The value of "a".
Solution :-
( x - 2 ) = 0
x = 2
Put the value of "x" in the equation :-
x³- 3x⁴- ax³+ 3ax²+ 2ax - 4
p( x ) = x³- 3x⁴- ax³+3ax²+ 2ax - 4
p ( 2 ) = (2)³- 3(2)⁴ - a(2)³ + 3a(2)² + 2a(2) - 4
p ( 2 ) = 8 - 3 ( 16 ) - a(8) + 3a(4) + 4a - 4
p ( 2 ) = 8 - 48 - 8a + 12a + 4a - 4
p ( 2 ) = - 40 + 4a + 4a - 4
p ( 2 ) = - 44 + 8a = 0
p ( 2 ) = 8a = 44
⇒ a = 44/8
= 11/2
Atlast :-
Hence, the value of "a" = 5.5