If x = -2 is a root of the polynomial P(x) = − 2x^4-7x^3-3x^2-tx-10 , then find the value of t.
Answers
Answered by
2
Step-by-step explanation:
x=-2
p(x)=2x*4-7x³-3x²-tx-10
p(-2)=2(-2)*4-7(-2)³-3(-2)²-t(-2)-10
p(-2)=32+56-12+2t-10
88-12+2t-10
=76+2t-10
=66+2t=0
t=-33
Answered by
1
Answer:
t = -1
Step-by-step explanation:
x = -2
p(x) = − 2x^4-7x^3-3x^2-tx-10
= - 2 × (-2)^4 - 7(-2)^3 - 3(-2)^2 - t(-2) - 10
= -2 * 16 - 7*-8 - 3*4 - (-2)t - 10
= - 32 - (-56) - 12 +2t -10
= 24 - 12 + 2t - 10
= 12 - 10 + 2t
= 2 + 2t
2+2t=0
2t = 0-2
2t = -2
t = -2/2
t = -1
Similar questions