Math, asked by oik, 4 days ago

If x-2 is factor of polynomial 5x²+mx, then value of m is​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{(x-2)\;is\;a\;factor\;of\;5x^2+mx}

\underline{\textbf{To find:}}

\textsf{The value of m}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\boxed{\textbf{(x-a) is a factor of P(x) if and nly if P(a)=0}}

\mathsf{P(x)=5x^2+mx}

\textsf{Since (x-2) is a factor of P(x), we have P(2)=0}

\implies\mathsf{5(2)^2+m(2)=0}

\implies\mathsf{5(4)+2m=0}

\implies\mathsf{20+2m=0}

\implies\mathsf{2m=-20}

\implies\mathsf{m=\dfrac{-20}{2}}

\implies\boxed{\mathsf{m=-10}}

\underline{\textbf{Find more:}}

Verify whether (x + 1), (x – 2) and (x + 3) are the factors of the polynomial x3 + 2x2– 5x – 6 without actual

division. with the explanation

https://brainly.in/question/41124775  

Similar questions