Math, asked by saipragnaofficial, 9 months ago

If x^2+px+q has the roots 2i+3,2i-3 then the discriminant of the equation is
1.)36 2.)32 3.)-36 4.)-16​

Answers

Answered by MaheswariS
6

\underline{\textbf{Given:}}

\textsf{2i+3 and 2i-3 are roots of}\;\mathsf{x^2+px+q=0}

\underline{\textbf{To find:}}

\textsf{Value of the discriminant}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;x^2+px+q=0}

\mathsf{Sum\;of\;the\;roots=\dfrac{-b}{a}}

\mathsf{2i+3+2i-3=\dfrac{-p}{1}}

\implies\mathsf{p=-4i}

\mathsf{Product\;of\;the\;roots=\dfrac{c}{a}}

\mathsf{(2i+3)(2i-3)=\dfrac{q}{1}}

\implies\mathsf{q=4i^2-9}

\implies\mathsf{q=-4-9}

\implies\implies\mathsf{q=-13}

\mathsf{The\;given\;equation\;becomes\;x^2-4i\,x-13}

\underline{\mathsf{Discriminant}}

\mathsf{=b^2-4ac}

\mathsf{=(-4i)^2-4(1)(-13)}

\mathsf{=16i^2+52}

\mathsf{=-16+52}

\mathsf{=36}

\underrline{\textbf{Answer:}}

\mathsf{Option\;(1)\;is\'correct}

\underline{\textbf{Find more:}}

If the roots of the quadratic equation 2kx2- 3kx + k + 1 = 0 are equal, then find K.

https://brainly.in/question/37607242

Answered by shiny8780
0

Answer:

please explain how i^2 is -1 be is arrived

Similar questions