Math, asked by ramana59, 1 year ago

If x=2 root 2 + root 7 then (x-1/x)^2 =

Answers

Answered by rishu6845
11

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by LovelyG
20

Answer:

\large{\underline{\boxed{\sf (x - \dfrac{1}{x})^2 = 28}}}

Step-by-step explanation:

Given that ;

x = 2√2 + √7

Now,

 \implies \tt  \frac{1}{x}  =  \frac{1}{2 \sqrt{2}  +  \sqrt{7} }  \\  \\  \implies \tt  \frac{1}{x}  =  \frac{1}{2 \sqrt{2}  +  \sqrt{7} }  \times  \frac{2 \sqrt{2}  -  \sqrt{7} }{2 \sqrt{2} -  \sqrt{7}  }  \\  \\  \implies \tt  \frac{1}{x}  =  \frac{2 \sqrt{2}  -  \sqrt{7} }{(2 \sqrt{2}) {}^{2} - ( \sqrt{7}) {}^{2}}

[Because, (a + b)(a - b) = a² - b²]

 \implies \tt  \frac{1}{x}  =  \frac{2 \sqrt{2} -  \sqrt{7}  }{8 - 7}  \\  \\  \implies \tt  \frac{1}{x}  =  \frac{2 \sqrt{2}  -  \sqrt{7} }{1}  \\  \\  \implies \tt  \frac{1}{x}  = 2 \sqrt{2}  -  \sqrt{7}

So,

 \implies \tt x -  \frac{1}{x}  = 2 \sqrt{2}  +  \sqrt{7}  - (2 \sqrt{2}  -  \sqrt{7} ) \\  \\  \implies \tt x -  \frac{1}{x}  = 2 \sqrt{2}   +   \sqrt{7}  - 2 \sqrt{2}  +  \sqrt{7}  \\  \\  \implies \tt  x - \frac{1}{x}  =  \sqrt{7}  +  \sqrt{7}  \\  \\  \implies \tt  x - \frac{1}{x}  = 2 \sqrt{7}

On squaring both sides,

 \implies \tt  (x - \frac{1}{x}) {}^{2}  = (2 \sqrt{7} ) {}^{2}  \\  \\  \boxed{ \red{ \therefore \:  \bf  \left( x - \frac{1}{x} \right )^{2}  = 28}}

Similar questions