Math, asked by venu3522, 9 months ago

if x=2- root 3 find the value of (x+1/x) the whole raised to 3

Answers

Answered by ssvashist408
0

Answer:

64

Step-by-step explanation:

x=2-√3

1/x=1/(2-√3)

multiplying and dividing by 2+√3 We get

1/x= 2+√3

So, x+1/x=4

cube of the same is 64

Answered by Anonymous
1

Answer:

x = 2 -  \sqrt{3}  \\  \\ value = (x +  \frac{1}{x}) \\  \\  = 2 -  \sqrt{3}  +  \frac{1}{2 -  \sqrt{3} }  \\  \\  = (2 -  \sqrt{3} )^{2}  + 1 \div 2 -  \sqrt{3}  \\  \\  \\  \\  =  \frac{4 + 3 - 4 \sqrt{3 }  + 1}{2 -  \sqrt{3} }  \\  \\  \\  =  \frac{8 - 4 \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \\  =  \frac{4(2 - 4 \sqrt{3}) }{2 - 4 \sqrt{3} }  \\  \\  \\  = 4

please mark me brainlist ✔️✔️

Similar questions