Math, asked by ananya15438, 3 days ago

if x = ( 2 + root 3 ), find the value of x^2 + 1/x^2​

Answers

Answered by Jafar2007
1

Answer:

14.Answer

Step-by-step explanation:

SEE THE IMAGE..

Attachments:
Answered by akeertana503
2

Question:-

  • if x = ( 2 + root 3 ), find the value of x^2 + 1/x^2

 \\

Solution:-

\small\sf\underline\green{given} ⟼x=2+√3

\small\sf\underline\green{Need\:to\:find}⟼x²+1/x²

______________________________________

x = 2 +  \sqrt{ 3}  \\

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\

After rationalizing the denominator we get as,

 \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\

 \frac{2 -  \sqrt{3} }{4 - 3}    = 2 -  \sqrt{3}  \\

Now, to find the value of x²+1/x² we need to first find the value of x+1/x

x +  \frac{1}{x}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3}  \\

x +  \frac{1}{x}  = 2 + 2  = 4 \\

Now, we need to find the value of x²+1/x²

(x +  \frac{1}{x} ) {}^{2}  = (4) {}^{2}  = 16 \\

(x +  \frac{1}{x} ) {}^{2}  = x {}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  \\

x {}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16 \\

\small\sf\red{ {x}^{2} +  \frac{1}{ {x}^{2} }  } =   \small\sf\green{16 - 2 = 14} \\

______________________________________

Hence, the value of x²+1/x²= \small\sf\underline\purple{14}

Similar questions