Math, asked by murukarthikakdz, 1 year ago

if x = 2 + root 3, find the value of x square + 1 by x square

Answers

Answered by abhi569
2
x = 2+ √3 

x² = (2 + √3)² 

x² = 4 + 3 + 2(2√3)

x² = 7 + 4√3 

--------------

1/x = 1/(2 + √3)



      By Rationalization,

1/x = (2 - √3)/[2² - (√3)²]

1/x =(2 - √3)/(4 -3)

1/x = (2 - √3 )/1

1/x = 2 - √3 

1/x² = (2 - √3)²

1/x² = 4 + 3 - 2(2√3)

1/x² = 7 - 4√3


                      Then,

x
²  + 1/x²

⇒ 7 + 43 + 7 - 43

⇒ 7 + 7

⇒ 14 



i hope this will help you



(-:

abhi569: Tumhara sahe tha... Option glt jagah chala gya... Sorry
abhi569: Kyu?? Reason??
abhi569: Pakka delete kru??
abhi569: Us wake ki link lao
abhi569: Khe se
abhi569: Wale*
murukarthikakdz: hey what ur commenting. please comment in english
Answered by Robin0071
1
Solution:-

given by:-

x =  2 +  \sqrt{3}   \\  {x}^{2} +   \frac{1}{ {x}^{2} }   \\  {(2 +  \sqrt{3}) }^{2}  +  \frac{1}{ {(2 +  \sqrt{3} )}^{2} }  \\  \frac{(2 + 3 + 4 \sqrt{3} )(2 + 3 + 4 \sqrt{3}) + 1 }{(2 +  \sqrt{3}) }  \\  \frac{4 + 6 + 8 \sqrt{3 } + 6 + 12 \sqrt{3}  + 8 \sqrt{3}   + 12 \sqrt{3}  + 48 + 1}{(2 +  \sqrt{3}) }  \\  \frac{65 + 40 \sqrt{3} }{(2 +  \sqrt{3} )}  \times  \frac{2  -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \frac{130 + 80 \sqrt{3}  - 65 \sqrt{3} - 120 }{4 - 3}  \\  \frac{10 + 15 \sqrt{3} }{1}  \\ (10 + 15 \sqrt{3} )ans
Similar questions