Math, asked by poonam95, 1 year ago

if x = 2 + root 3 find the value of x square + 1 upon x square

Answers

Answered by 9552688731
216
x = 2+√3

fill the value of X in the equation

x²+1/x²

= (2+√3)²+1/(2+√3)²

= (2)²+(√3)²+2(2)(√3)+1/(2)²+(√3)²+2(2)(√3)

= 4+3+4√3+1/4+3+4√3

= 7+4√3+1/7+4√3

= (7+4√3)²+1/7+4√3

= 49+48+8√3+1/7+√3

= 98+8√3/7+√3

poonam95: Thanks
Answered by SmãrtyMohït
730
Here is your solution

Given :-

x=2+√3

Now

 \frac{1}{x} = \frac{1}{2 +\sqrt{3} } \times \frac{2 -\sqrt{3} }{2 - \sqrt{3} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{2 {}^{2} - ( \sqrt{3}) {}^{2} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{4 - 3} \\ \frac{1}{x} = 2 - \sqrt{3} \\ \\ \\

 x + \frac{1}{x} = 2 - \sqrt{3} + 2 + \sqrt{3} \\ x + \frac{1}{x} = 4 \\ Both \: sides \: squaring. \: \\ (x + \frac{1}{x} ) {}^{2} = 4 {}^{2} \\ x {}^{2} + \frac{1}{x {}^{2} } + 2 = 16 \\ x {}^{2} + \frac{1}{x {}^{2} } = 16 - 2 \\ x {}^{2} + \frac{1}{x {}^{2} } = 14

Hope it helps you
Similar questions