Math, asked by rchowbey37, 7 months ago

if x=2+ root 3 find x³+ 1/x³
plz tell me the process​

Answers

Answered by Anonymous
52

\huge\boxed{\fcolorbox{purple}{pink}{Answer}}

Gɪᴠᴇɴ : x = 2 +  \sqrt{3}

Tᴏ Fɪɴᴅ :  {x}^{3}  +  \frac{1}{ {x}^{3} }

Sᴏʟᴜᴛɪᴏɴ  :-

x = 2 +  \sqrt{3}

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

  \:  \:  \:  \:  \: \frac{1}{x}  =   \frac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3}) }^{2}}

 \:  \:  \:  \:  \:   \:  \: \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{x}  = 2 -  \sqrt{3}

Nᴏᴡ

x +  \frac{1}{x}

➺ \:  \: 2 +  \sqrt{3}  + 2 -  \sqrt{3}

➺ \:  \:  \: 2 + 2

➺ \:  \:  \: 4

Sᴏ, \:  Cᴜʙɪɴɢ  \: ʙᴏᴛʜ  \: ᴛʜᴇ  \: sɪᴅᴇs,  \: Wᴇ \:  ɢᴇᴛ,

 {(x +  \frac{1}{x} )}^{3}  =  {4}^{3}

 {x}^{3} +  \frac{1}{ {x}^{3} }  + 3(x +  \frac{1}{x}) = 64

 \:  \:  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 4 = 64

 {x}^{3}  +  \frac{1}{ {x}^{3} }  + 12 = 64

 {x}^{3}  +  \frac{1}{ {x}^{3} }  =64 - 12

\huge\mathcal\pink{\boxed{\boxed{ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 52}}}

Hσρє ıт нєℓρѕ уσυ!

Answered by iampriyanka1
7

Step-by-step explanation:

hope this helps you dear ♥

Attachments:
Similar questions