Math, asked by roopavenkat20p66vex, 1 year ago

If x=(2+root 3), show that (x3 +1/x3)=52

Answers

Answered by Swarup1998
2
♧♧HERE IS YOUR ANSWER♧♧

Given :
x = 2 +  \sqrt{3}

Now,
 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  =  \frac{2 -  \sqrt{3}  }{(2 +  \sqrt{3} )( 2 -  \sqrt{3} )}  \\  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  = 2 -  \sqrt{3}

So,
x +  \frac{1}{x }  = (2 + 3 \sqrt{3} ) + (2 -  \sqrt{3} ) \\  = 4

Now, L.H.S.
 =  {x}^{3}  +  \frac{1}{ {x}^{3} }  \\  = (x +  \frac{1}{x} )( {(x +  \frac{1}{x}) }^{2}  - 3) \\  = 4( {4}^{2}  - 3) \\  = 4(16 - 3) \\  = 4 \times 13 \\  = 52
=R.H.S. [Proved]

♧♧HOPE THIS HELPS YOU♧♧
Similar questions