If x=(2+root 3), show that (x3 +1/x3)=52
Answers
Answered by
5
♧♧HERE IS YOUR ANSWER♧♧
Given :
Now,
Again,
So, L.H.S.
= R.H.S. [Proved]
♧♧HOPE THIS HELPS YOU♧♧
Given :
Now,
Again,
So, L.H.S.
= R.H.S. [Proved]
♧♧HOPE THIS HELPS YOU♧♧
Answered by
2
♧♧HERE IS YOUR ANSWER♧♧
Given :
x = 2 + \sqrt{3}x=2+√3
Now,
\begin{lgathered}\frac{1}{x} = \frac{1}{2 + \sqrt{3} } \\ = \frac{2 - \sqrt{3} }{(2 + \sqrt{3} )(2 - \sqrt{3}) } \\ = \frac{2 - \sqrt{3} }{4 - 3} \\ = 2 - \sqrt{3}\end{lgathered}x1=2+√31=(2+√3)(2−√3)2−√3=4−32−√3=2−√3
Again,
\begin{lgathered}x + \frac{1}{x} \\ = (2 + \sqrt{3} ) + (2 - \sqrt{3} ) \\ = 4\end{lgathered}x+x1=(2+√3)+(2−√3)=4
So, L.H.S.
\begin{lgathered}= {x}^{3} + \frac{1}{ {x}^{3} } \\ = (x + \frac{1}{x} )( {(x + \frac{1}{x}) }^{2} - 3) \\ = 4( {4}^{2} - 3) \\ = 4(16 - 3) \\ = 4 \times 13 \\ = 52\end{lgathered}=x3+x31=(x+x1)((x+x1)2−3)=4(42−3)=4(16−3)=4×13=52
= R.H.S. [Proved]
♧♧HOPE THIS HELPS YOU♧♧
Given :
x = 2 + \sqrt{3}x=2+√3
Now,
\begin{lgathered}\frac{1}{x} = \frac{1}{2 + \sqrt{3} } \\ = \frac{2 - \sqrt{3} }{(2 + \sqrt{3} )(2 - \sqrt{3}) } \\ = \frac{2 - \sqrt{3} }{4 - 3} \\ = 2 - \sqrt{3}\end{lgathered}x1=2+√31=(2+√3)(2−√3)2−√3=4−32−√3=2−√3
Again,
\begin{lgathered}x + \frac{1}{x} \\ = (2 + \sqrt{3} ) + (2 - \sqrt{3} ) \\ = 4\end{lgathered}x+x1=(2+√3)+(2−√3)=4
So, L.H.S.
\begin{lgathered}= {x}^{3} + \frac{1}{ {x}^{3} } \\ = (x + \frac{1}{x} )( {(x + \frac{1}{x}) }^{2} - 3) \\ = 4( {4}^{2} - 3) \\ = 4(16 - 3) \\ = 4 \times 13 \\ = 52\end{lgathered}=x3+x31=(x+x1)((x+x1)2−3)=4(42−3)=4(16−3)=4×13=52
= R.H.S. [Proved]
♧♧HOPE THIS HELPS YOU♧♧
Similar questions