Math, asked by sakshhatbhavsar, 7 months ago

if x = 2 + root 3 then find x^3 + 1/x^3

Answers

Answered by Flaunt
36

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

if x = 2 + root 3 then find x^3 + 1/x^3

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

\bold{ =  >  \frac{ {x}^{3}  + 1} { {x}^{ 3} }}

 \bold{=  >  \frac{ {(2 +  \sqrt{3} )}^{3}  + 1}{ {(2 +  \sqrt{3} )}^{3} }}

Here,this identity is used:

\bold{\red{ =  >  {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)}}

 \bold{=  >  \frac{ {(2)}^{3}  +  {( \sqrt{3}) }^{3}  + 3(2)( \sqrt{3} ) (2 +  \sqrt{3} ) + 1}{ {(2)}^{3} +  {( \sqrt{3}) }^{3}   + 3(2)( \sqrt{3} )(2 +  \sqrt{3}) }}

 \bold{=  >  \frac{4 + 3 + 6 \sqrt{3} (2 +  \sqrt{3}) + 1 }{4 + 3 + 6 \sqrt{3} (2 +  \sqrt{3} )}}

 \bold{=  >  \frac{7 + 6 \sqrt{3} (2 +  \sqrt{3}) + 1 }{7 + 6 \sqrt{3} (2 +  \sqrt{3}) }  = 1}

\bold{\pink{ =  > 7 + 6 \sqrt{3} (2 +  \sqrt{3} )}} is being cancelled out as it comes on both numerator as well as denominator.

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions