Math, asked by mukeshvai685, 7 months ago

if x = 2 - root 5 divided by 2 + root 5 and y = 2 + root 5 divided by 2- root 5 find the value of x square - y square + 2xy

Answers

Answered by LaeeqAhmed
0

Answer:

0

Step-by-step explanation:

GIVEN:-

x =  \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }

y =  \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }

NEED TO FIND:-

 {x}^{2}  -  {y}^{2}  + 2xy

SOLUTION:-

 = ( { \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }) }^{2}  - (  { \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }) }^{2}  + 2( \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} } )( \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} } )

We know that,

{\boxed{({a+b})^{2}={a}^{2}+2ab+{b}^{2}}}

{\boxed{({a-b})^{2}={a}^{2}-2ab+{b}^{2}}}

{\boxed{(a+b)(a-b)={a}^{2}-{b}^{2}}}

 =(  \frac{4  +  5 - 4 \sqrt{5} }{4 + 5 + 4 \sqrt{5} })  - ( \frac{4 + 5 + 4 \sqrt{5} }{4 + 5 - 4 \sqrt{5} } ) + 2( \frac{4 - 5}{4 - 5} )

 =  \frac{9  - 4 \sqrt{5} }{9 + 4 \sqrt{5} }  -  \frac{9 + 4 \sqrt{5} }{9 - 4 \sqrt{5} }  + 2

 =  \frac{ ( {9 - 4 \sqrt{5} )^{2}  -( 9 + 4 \sqrt{5})  }^{2} }{ ({9})^{2} -  ({4 \sqrt{5} )}^{2}  } +2

 =  \frac{81 + 80 - 8 \sqrt{5} -  (81 + 80 - 8 \sqrt{5}) }{81 - 80}+2

 =  \frac{81 + 80 - 8 \sqrt{5} - 81 - 80 + 8 \sqrt{5}   }{1} +2

 =   \frac{0}{1}+2

 = 0+2

\color{red}{{\boxed{{x}^{2}  -  {y}^{2}  + 2xy=2}}}

HOPE THAT HELPS!!

Similar questions