if x =(2+root 5) ,find the value of x+1/x
Answers
Given:
The value of x = ( 2+ )
To find:
The value of x+(1/x)
Solution:
The value of x is equal to (2+ ).
Step 1:
We will directly put the value of x in x+(1/x).
x + (1/x) =
The denominators are different,
therefore, the adding of the values is not possible without taking the L.C.M
Step 2:
We will take L.C.M. and make the denominators the same.
L.C.M of 1 and ( 2+ ) is (2+).
Step 3:
Since the denominators are the same, we can add the values.
x + (1/x) = { ( 2+ ) ( 2+ ) + 1 } ÷ (2+ )
In the numerator, ( 2 + √5 ) ( 2 + √5 ) is comparable to the following algebraic identity,
( a+b) (a+b) = ( a+ b)² = a² + b² + 2ab
( 2 + √5 ) ( 2 + √5 ) = ( 2 + √5 ) ²
= 2² + (√5)² + 2( 2) ( √5)
= 4 + 5 + 4√5
= 9 + 4√5
x + (1/x) = (9 + 4√5 + 1 ) / ( 2 + √5)
x + (1/x) = ( 10 + 4√5 ) / ( 2 + √5)
Step 4:
To simplify the above terms, we will rationalize the fraction.
Multiplying numerator and denominator by ( 2 - √5)
= ( 10 + 4√5 )( 2 - √5) / ( 2 + √5) ( 2 - √5)
The denominator ( 2 + √5) ( 2 - √5) is in the form of identity ( a+b) (a-b)
Since , ( a+b) (a-b) = ( a² - b²)
∴ ( 2 + √5) ( 2 - √5) = (4 - 5)
x + (1/x) = (20 - 10 √5 + 8√5 - 20) / ( 4 - 5)
On solving the above equations, we get,
x + (1/x) = 2√5
The value of x + (1/x) is 2√5.
Answer:
Given:
The value of x = ( 2+ \sqrt{5}
5
)
To find:
The value of x+(1/x)
Solution:
The value of x is equal to (2+ \sqrt{5}
5
).
Step 1:
We will directly put the value of x in x+(1/x).
x + (1/x) = (2+\sqrt{5}) + ( \frac{1}{2+\sqrt{5} })(2+
5
)+(
2+
5
1
)
The denominators are different,
therefore, the adding of the values is not possible without taking the L.C.M
Step 2:
We will take L.C.M. and make the denominators the same.
L.C.M of 1 and ( 2+\sqrt{5}
5
) is (2+\sqrt{5}
5
).
Step 3:
Since the denominators are the same, we can add the values.
x + (1/x) = { ( 2+ \sqrt{5}
5
) ( 2+ \sqrt{5}
5
) + 1 } ÷ (2+ \sqrt{5}
5
)
In the numerator, ( 2 + √5 ) ( 2 + √5 ) is comparable to the following algebraic identity,
( a+b) (a+b) = ( a+ b)² = a² + b² + 2ab
( 2 + √5 ) ( 2 + √5 ) = ( 2 + √5 ) ²
= 2² + (√5)² + 2( 2) ( √5)
= 4 + 5 + 4√5
= 9 + 4√5
x + (1/x) = (9 + 4√5 + 1 ) / ( 2 + √5)
x + (1/x) = ( 10 + 4√5 ) / ( 2 + √5)
Step 4:
To simplify the above terms, we will rationalize the fraction.
Multiplying numerator and denominator by ( 2 - √5)
= ( 10 + 4√5 )( 2 - √5) / ( 2 + √5) ( 2 - √5)
The denominator ( 2 + √5) ( 2 - √5) is in the form of identity ( a+b) (a-b)
Since , ( a+b) (a-b) = ( a² - b²)
∴ ( 2 + √5) ( 2 - √5) = (4 - 5)
x + (1/x) = (20 - 10 √5 + 8√5 - 20) / ( 4 - 5)
On solving the above equations, we get,
x + (1/x) = 2√5