If x=2-root under3, find the value lf (x+1/x)cube+(x+1/x)square+(x+1/x)-100.
Answers
Answered by
5
Given,
x = 2 - √3
=> 1/x = 1/(2 - √3)
Rationalising it, we get
1/x = (2+√3) ÷ (2 -√3)(2 + √3)
=> 1/x = 2+ √3/4 - 3
=> 1/x = 2 + √3/1
=> 1/x = 2 + √3
Now we have to find,
( x + 1/x)³ + (x + 1/x)² + (x + 1/x) - 100
Substituting the value of x and 1/x we get,
(2 - √3 + 2 +√3)³ + (2 - √3 + 2 + √3)² + (2 - √3 + 2 + √3) - 100
=> (4)³ + (4)² + (4) - 100
=> 64 + 16 + 4 - 100
=> 84 - 100
=> -16
Hence, your answer is -16
Hope it helps dear friend ☺️
x = 2 - √3
=> 1/x = 1/(2 - √3)
Rationalising it, we get
1/x = (2+√3) ÷ (2 -√3)(2 + √3)
=> 1/x = 2+ √3/4 - 3
=> 1/x = 2 + √3/1
=> 1/x = 2 + √3
Now we have to find,
( x + 1/x)³ + (x + 1/x)² + (x + 1/x) - 100
Substituting the value of x and 1/x we get,
(2 - √3 + 2 +√3)³ + (2 - √3 + 2 + √3)² + (2 - √3 + 2 + √3) - 100
=> (4)³ + (4)² + (4) - 100
=> 64 + 16 + 4 - 100
=> 84 - 100
=> -16
Hence, your answer is -16
Hope it helps dear friend ☺️
akhila6758:
hyyyy
Similar questions