Math, asked by paras99, 1 year ago

if x=2+root3/2-root3 show that x^2-14x+1=0

Attachments:

Answers

Answered by asis11001pbav15
5
here is ur answer first find the value of x thereafter the roots comes out to be in rational form so we know that in a quadratic equation if one root is rational then other root is also rational then we find root by putting (x-a)(x+a)

check out
Attachments:
Answered by rakeshmohata
11
Hope u like my process.
=====================
 =  > x =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }   \\ \\ or. \:  \: x = \frac{ {(2 +  \sqrt{3} )}^{2} }{(2 +  \sqrt{3})(2 -  \sqrt{3})  }   \\  \\ or. \:  \: x =  \frac{ {2}^{2} +  {( \sqrt{3}) }^{2}  + 2 \times 2 \times  \sqrt{3}  }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\ or. \:  \: x =  \frac{4 + 3 + 4 \sqrt{3} }{4 - 3}  = 7 + 4 \sqrt{3}
Now..

 =  >  {x}^{2}  - 14x + 1 \\ \\   =  {(7 + 4 \sqrt{3} )}^{2}  - 14(7 + 4 \sqrt{3} ) + 1 \\  \\  =  {7}^{2}  +  {(4 \sqrt{3}) }^{2}  + 2  \times 7 \times 4 \sqrt{3}  - 14 \times 7 - 14 \times 4 \sqrt{3}  + 1 \\  \\  = 49 + 48 + 56 \sqrt{3}  - 98 - 56 \sqrt{3 }  + 1 \\  \\ =  98 - 98 = 0..... < proved >
_-_-_-_-_-_-_-_-_-_-_-
Hope this is ur required answer

Proud to help you
Similar questions