Math, asked by CAnjali, 1 year ago

If x=2+root3 find the value of x+1\x

Answers

Answered by HimanshuR
3

x = 2 +  \sqrt{3}  \\  \frac{1}{x} =  \frac{1}{2 +  \sqrt{3} }   \\  =  \frac{1}{2 +  \sqrt{3} } \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }   \\  =  \frac{2 -  \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2}  } =  \frac{2 -  \sqrt{3} }{4 - 3}    = 2 -  \sqrt{3}  \\ x +  \frac{1}{x}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3}  = 2 + 2 \\  = 4
Answered by Mohanchandrabhatt
0

hey \: freind \: here \: is \: your \: answer.
x = 2 + √3
1 / x = 1 / 2 + √3
now \: ratinalising \: the \: denomintor \:
 multiplying \: 2 -  \sqrt{3}  \: to \: both \: numerator \: and \: denomntor

1 / x = 1 / 2 + √3 * 2 - √3 / 2 - √3
using \:   {a}^{2} \:  -   {b}^{2} \:  =  \: ( \: a - b \: )( a \: + b \: )
1 / x = 2 - √3 / 2² - √3²
1 / x = 2 - √3 / 4 - 3
1 / x = 2 - √3
now \: finding \: x + 1 \div x
x + 1 / x = 2 + √3 + 2 - √3
x + 1 / x = 4
hope \: it \: helps


Similar questions