if x=2-root3,find the value of x2+1/xandx2-1/x2
Answers
Answered by
0
If x=2-√3
By rationalization,
1/x=2+√3
Then,
x²+1/x
=(2-√3)²+(2+√3)
=4+3-4√3+4+√3
=11-3√3=(x²+1/x)
And
x²-1/x²
=(2-√3)²+(2+√3)²
=4+3-4√3+4+3+4√3
=7+7
=14
By rationalization,
1/x=2+√3
Then,
x²+1/x
=(2-√3)²+(2+√3)
=4+3-4√3+4+√3
=11-3√3=(x²+1/x)
And
x²-1/x²
=(2-√3)²+(2+√3)²
=4+3-4√3+4+3+4√3
=7+7
=14
Answered by
0
Hey there !
______________________
Given :
x = 2 - √3
1/x = 1/ 2 - √3 × 2 + √3 / 2 + √3
1/x = 2 + √3 / 2² - √3²
1/x = 2 + √3 / 4 - 3
1/x = 2 + √3
Now,
x + 1/x = 2 - √3 + 2 + √3
x + 1/x = 2 + 2
x + 1/x = 4
Squaring both sides ;
( x + 1/x)² = (4)²
=> x² + 1/x² + 2 = 16
=> x² + 1/x² = 16 - 2
=> x² + 1/x² = 14
Now,
=> x² = ( 2 - √3 ) ²
=> x² = 2² + √3² - 2 * 2 * √3
=> x² = 4 + 3 - 4√3
=> x² = 7 - 4√3
And,
=> ( 1 / x² ) = ( 2 + √3 ) ²
=> ( 1 / x² ) = 2² + √3² + 2 * 2 * √3
=> ( 1 / x² ) = 4 + 3 + 4√3
=> ( 1 / x² ) = 7 + 4√3
So,
x² - 1 / x² = 7 - 4√3 - 7 - 4√3
=> x² - 1 / x² = 0
_______________________
Thanks for the question!
☺️☺️☺️
______________________
Given :
x = 2 - √3
1/x = 1/ 2 - √3 × 2 + √3 / 2 + √3
1/x = 2 + √3 / 2² - √3²
1/x = 2 + √3 / 4 - 3
1/x = 2 + √3
Now,
x + 1/x = 2 - √3 + 2 + √3
x + 1/x = 2 + 2
x + 1/x = 4
Squaring both sides ;
( x + 1/x)² = (4)²
=> x² + 1/x² + 2 = 16
=> x² + 1/x² = 16 - 2
=> x² + 1/x² = 14
Now,
=> x² = ( 2 - √3 ) ²
=> x² = 2² + √3² - 2 * 2 * √3
=> x² = 4 + 3 - 4√3
=> x² = 7 - 4√3
And,
=> ( 1 / x² ) = ( 2 + √3 ) ²
=> ( 1 / x² ) = 2² + √3² + 2 * 2 * √3
=> ( 1 / x² ) = 4 + 3 + 4√3
=> ( 1 / x² ) = 7 + 4√3
So,
x² - 1 / x² = 7 - 4√3 - 7 - 4√3
=> x² - 1 / x² = 0
_______________________
Thanks for the question!
☺️☺️☺️
Similar questions