Math, asked by beautifully33, 11 months ago

if X=(2+root5)^1/2+(2-root)^1/2 and y=(2+root5)^1/2-(2-root5)^1/2 then evaluate x^2 +y^2 solve on a paper please ^means raise to

Answers

Answered by Anonymous
45

Question :

If x=(2+\sqrt{5}){}^{\frac{1}{2}}+(2-\sqrt{5}){}^{\frac{1}{2}} and y=(2+\sqrt{5}){}^{\frac{1}{2}}-(2-\sqrt{5}){}^{\frac{1}{2}}

Then evaluate x{}^{2}+y{}^{2}

Formula used :

1)(x + y) {}^{2}  = x {}^{2}  + y {}^{2}  - 2xy

2)(x - y) {}^{2}  = x {}^{2}  + y {}^{2}  - 2xy

3)x {}^{2}  - y {}^{2}  = (x + y)(x - y)

Solution :

we to find the value of x{}^{2}+y{}^{2}

x=(2+\sqrt{5}){}^{\frac{1}{2}}+(2-\sqrt{5}){}^{\frac{1}{2}}

Now squaring on both sides

x{}^{2}  = (( \sqrt{2 +  \sqrt{5} }) +( \sqrt{2 -  \sqrt{5} }   )) {}^{2}

x { }^{2}  = 2 +  \sqrt{5}  + 2 -  \sqrt{5}  + 2 \sqrt{2 +  \sqrt{5} }  \times  \sqrt{2 -  \sqrt{5} }

x{}^{2}= 4 + 2 \times  \sqrt{2 +  \sqrt{5} }  \times  \sqrt{2 -  \sqrt{5} } ...(1)

y=(2+\sqrt{5}){}^{\frac{1}{2}}-(2-\sqrt{5}){}^{\frac{1}{2}}

Squaring on both sides

y {}^{2}  = (( \sqrt{2 +  \sqrt{5} } ) -  \sqrt{2 -  \sqrt{5} } )) {}^{2}

y {}^{2}  = 2 +  \sqrt{5}  + 2 -  \sqrt{5}  - 2  \times \sqrt{2 +  \sqrt{5} }  \times  \sqrt{2 -  \sqrt{5} }

y{}^{2} = 4 - 2 \times  \sqrt{2 +  \sqrt{5} }  \times  \sqrt{2 -  \sqrt{5} } ...(2)

___________________________

Now add equation (1)&(2)

x {}^{2}  + y {}^{2}  = 4 - 2 \times  \sqrt{2 +  \sqrt{5} }  \times  \sqrt{2 -  \sqrt{5} }  + 4 - 2 \times  \sqrt{2  +  \sqrt{5} }  \times  \sqrt{2 -  \sqrt{5} }

 \implies \: x {}^{2}  + y {}^{2}   =  8

which is the required solution!

Answered by gyaansaharma
1

Step-by-step explanation:

from Dear Gyaan sir on yt

Attachments:
Similar questions