if x= 2-\sqrt{3} . fin value of x^{2} +1/x^{2} and x^{2} -1/x^{2}
Answers
Answer:
a)=6/7 b=8/7
Step-by-step explanation:
x^2=(2-root3)^2
x^2=4root3-7.....(put on 1 equatio)
we get:4root3-7 +1/4root3-7
4root3 se 4root3 cancle
so we get
Question :
If x = 2 - √3 . Find the value of x² + 1/x² and x² - 1/x² ?
ANSWER
Given : -
x = 2 - √3
Required to find : -
- value of x² + 1/x² ?
- value of x² - 1/x² ?
Solution : -
x = 2 - √3
we need to find the values of x² + 1/x² and x² - 1/x² ?
So,
Firstly ,
Let's find the value of x² !
➜ x = 2 - √3
➜ 2 - √3
➜ ( 2 - √3 )²
Using the Identity ;
- ( a - b )² = a² + b² - 2ab
➜ ( 2 - √3 )² =
➜ ( 2 )² + ( √3 )² - 2 ( 2 ) ( √3 )
➜ 4 + 3 - 4 ( √3 )
➜ 7 - 4√3
Hence,
- value of x² = 7 - 4√3
Now,
Let's find the value of x² + 1/x²
➜ x² + 1/x²
Here,
➜ 1/x² =
➜ 1/7 - 4√3
Multiply the numerator and denominator with 7 + 4√3
➜ 1/7 - 4√3 x 7+4√3/7+4√3
Using the identity ;
- ( a + b ) ( a - b ) = a² - b²
➜ 7+4√3/ ( 7 )² - ( 4√3 )²
➜ 7+4√3/49 - 16 x 3
➜ 7+4√3/49 - 48
➜ 7+4√3/1
➜ 7+4√3
This implies ;
value of x² = 7 - 4√3
value of 1/x² = 7 + 4√3
So,
Value of x² + 1/x is ;
➜ 7 - 4√3 + 7 + 4√3
➜ - 4√3 , + 4√3 gets cancelled
➜ 7 + 7
➜ 14
Similarly,
Value of x² - 1/x²
➜ 7 - 4√3 - ( 7 - 4√3 )
➜ 7 - 4√3 - 7 + 4√3
➜ All the terms get cancelled due to their alternative signs
➜ 0
Therefore,
Value of x² + 1/x² = 14 ↤
Value of x² - 1/x² = 0 ↤
- : Additional Information : -
Question
What is Rationalising ?
Answer
Rationalising is a process by which we can eliminate the denominator of any algebraic expressions .
This process involves by multiplying the expression with the same one but with an alternative sign.
For example : -
Rationalising factor of 5 + 3√2 is 5 - 3√2 .
Rationalising factor of 1 - 2 √5 is 1 + 2√15 .
Similarly,
Rationalising factor of √5 is √5 .
This method works for both complex number system and real numbers also .
By rationalising we can expand the denominator if required and also we can reduce the size of a denominator too .
With these we also use some algebraic Identities they are ;
- ( x + y ) ( x - y ) = x² - y²
- ( x + a ) ( x + b ) = x² + x ( a + b ) + ab
- ( x + y )² = x² + y² + 2xy
- ( x - y )² = x² + y² - 2xy