Math, asked by skludhiyani, 1 month ago

If x = (2 + sqrt(5)) ^ (1/2) + (2 - sqrt(5)) ^ (1/2) and y = (2 + sqrt(5)) ^ (1/2) - (2 - sqrt(5)) ^ (1/2) then evaluate x ^ 2 + y ^ 2

Answers

Answered by senboni123456
6

Answer:

Step-by-step explanation:

We have,

\tt{\blue{x=\sqrt{2+\sqrt{5} }+\sqrt{2-\sqrt{5} }\,\,\,\,\,and\,\,\,\,\,y=\sqrt{2+\sqrt{5} }-\sqrt{2-\sqrt{5} }}}

Now,

\sf{{x}^{2}+{y}^{2}}

\sf{=\{\sqrt{2+\sqrt{5} }+\sqrt{2-\sqrt{5} }\}^2+\{\sqrt{2+\sqrt{5} }-\sqrt{2-\sqrt{5} }\}^2}

\rm{\green{We\,\,know,\,\,(a+b)^2+(a-b)^2=2(a^2+b^2) }}

So,

\sf{x^2+y^2=2[\{\sqrt{2+\sqrt{5} }\}^2+\{\sqrt{2-\sqrt{5} }\}^2]}

\sf{\implies\,x^2+y^2=2[2+\sqrt{5} +2-\sqrt{5} ]}

\sf{\implies\,x^2+y^2=2[2 +2 ]}

\sf{\implies\,x^2+y^2=2\times4}

\sf{\implies\,x^2+y^2=8}

Answered by ajjayyamarketing
1

Step-by-step explanation:

If x = (2 + sqrt(5)) ^ (1/2) + (2 - sqrt(5)) ^ (1/2) and y = (2 + sqrt(5)) ^ (1/2) - (2 - sqrt(5)) ^ (1/2) then evaluate x ^ 2 + y ^ 2

Attachments:
Similar questions