Math, asked by pragunsharma55, 9 months ago

if x = 2 - \sqrt{3}, then find the value of x^{3} - \frac{1}{x^{3}}

Answers

Answered by SOHAMNERURKAR
0

Answer:

please type something sensefull

Answered by kamleshkantaria
0

Answer:

Step-by-step explanation:

To find the value of x^{3} - 1/ x^{3}

x = 2 - \sqrt{3}

Step =

As x = 2 - \sqrt{3}

So 1/x = 1/2 - \sqrt{3}

Now rationalize the denominator of number 1/2 - \sqrt{3} so that we could easily proceed

To rationalize the denominator of the number 1/2 - \sqrt{3}

Multiply both the denominator and numerator of the number with the conjugate of the denominator(2 - \sqrt{3})

The conjugate o the denominator(2 - \sqrt{3}) is 2 + \sqrt{3}

That is,

1/x = 1/2 - \sqrt{3} X 2 + \sqrt{3}/2 + \sqrt{3}

Follow the identity

1/x = 2 + \sqrt{3}/(2)^{2} - (\sqrt{3}) ^{2}[Using identity a^{2} - b^{2} = (a + b)(a - b)

1/x = 2 + \sqrt{3}/4 - 3[ (\sqrt{3}) ^{2} = 3]

1/x = 2 + \sqrt{3}(or 2 + \sqrt{3}/1)

Now we know

x = 2 - \sqrt{3}

1/x =2 + \sqrt{3}

To find the value of x^{3} + 1/ x^{3}

(x)^{3} - (1/x)^{3}= (2 - \sqrt{3})^{3} - (2 + \sqrt{3})^{3}[Because x = 2 - \sqrt{3} and 1/x =2 + \sqrt{3}]

Follow the identity

(x)^{3} + (1/x)^{3} = (2 - \sqrt{3} - 2 + \sqrt{3})([2 - \sqrt{3}] ^{2} + (2 - \sqrt{3})(2 + \sqrt{3}) + [2 + \sqrt{3}] ^{2})[Using identity a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})]

(x)^{3} + (1/x)^{3} = (2 - 2)(4 - 4\sqrt{3} + 3 + 4 + 2\sqrt{3} - 2\sqrt{3} - \sqrt{9} + 4 + 4\sqrt{3} + 3)

(x)^{3} + (1/x)^{3} = (0)(7 - 4\sqrt{3} + 4 - 3( \sqrt{9} = 3) + 7 + 4\sqrt{3})

(x)^{3} + (1/x)^{3} = (0)(7 + 1 + 7)

(x)^{3} + (1/x)^{3} = 0 X 15

We know that anything multiplied by 0 is 0

So,

(x)^{3} + (1/x)^{3} = 0

Similar questions