if x=2+under root 3, find the value of x(cube) + 1/x(cube)
Answers
Answered by
3
1/x = 1/(2+√3) = (4-3)/ (2+√3)
= (2-√3)(2+√3)/(2+√3)
= 2-√3
x^3 + 1/x^3
= ( x+ 1/x)^3 - 3×x× 1/x( x+ 1/x)
= 2+√3 +2-√3)^3 - 3( 2+√3 +2-√3)
= 4^3 - 3(4)
= 64 -12 = 52
NishikaShahani:
thx a lot!!
Similar questions