Math, asked by amrita8552, 10 months ago

If x = (2+under root 3),show that (x cube +1/x cube )=52

Answers

Answered by BrainlyConqueror0901
16

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }}  \\  \tt: \implies x = 2 +  \sqrt{3}   \\  \\ \red{\underline \bold{To \: Show : }} \\  \tt:  \implies  {x}^{3}  +  { (\frac{1}{x} )}^{3}  = 52

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt: \implies  {x}^{3}   =  {(2 +  \sqrt{3} )}^{2}\\\\ \tt\circ\:(a+b)^{3}=a^{3}+b^{3}+3a^{2}b+3ab^{2}  \\  \\ \tt: \implies  {x}^{3}  =   {2}^{3}  +  \sqrt{3}^{3}  + 3  \times {2}^{2}  \times  \sqrt{3}  + 3 \times 2 \times  { \sqrt{3} }^{2}  \\  \\ \tt: \implies  {x}^{3}   =8 + 3 \sqrt{3}  + 12 \sqrt{3}  + 18  \\  \\ \tt: \implies  {x}^{3}   =26 + 15 \sqrt{3}  -  -  -  -  - (1) \\  \\  \bold{As \:we \: know \: that} \\ \tt: \implies   (\frac{1}{x}  )^{3} = ( \frac{1}{2  +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3}  })^{3} \\  \\ \tt: \implies   (\frac{1}{x}  )^{3} =  (\frac{2 -  \sqrt{3} }{4 - 3} )^{3}  \\  \\ \tt: \implies   (\frac{1}{x}  )^{3} = {(2 -  \sqrt{3} )}^{3} \\\\ \tt\circ\:(a-b)^{3}=a^{3}-b^{3}-3a^{2}b+3ab^{3} \\  \\ \tt: \implies   (\frac{1}{x}  )^{3} = {2}^{3}  -  (\sqrt{3} )^{2}  - 3 \times  {2}^{2}  \times  \sqrt{3}  + 3 \times 2 \times  (\sqrt{3})^{2}  \\  \\ \tt: \implies   (\frac{1}{x}  )^{3} =8 - 3 \sqrt{3}  - 12 \sqrt{3}  + 18 \\  \\ \tt: \implies   (\frac{1}{x}  )^{3} =26 - 15 \sqrt{3}  -  -  -  -  - (2) \\  \\  \bold{For \: finding \: value : } \\ \tt: \implies    {x}^{3} +  (\frac{1}{x}  )^{3} =26 +  15\sqrt{3}  + 26 - 15 \sqrt{3}  \\  \\  \green{\tt: \implies    {x}^{3} +  (\frac{1}{x}  )^{3} =52} \\  \\   \green{\huge{\tt \:\:\:\:Proved }}

Answered by vinodchowdhury14
10

x = 2 +  \sqrt{3}

 \frac{1}{x}  =  \frac{2  -   \sqrt{3} }{(2 +  \sqrt{3) \times (2 -  \sqrt{3) } } }

 \frac{1}{x }  =  \frac{2 -  \sqrt{3} }{4 - 3}

 \frac{1}{x}  = 2 -  \sqrt{3}

 {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(x +  \frac{1}{x}) }^{3}  - 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} )

 {(2 +  \sqrt{3 }  + 2 -  \sqrt{3}) }^{3}  - 3(2 +  \sqrt{3}  + 2 -  \sqrt{3}

 {4}^{3}  - 3(4)

64 - 12 = 52 \: proved

Attachments:
Similar questions