Math, asked by sankalp3995, 1 year ago

If x=2+under root3 Then Show that x³ + 1/x³=52​

Answers

Answered by sivaprasath
9

Step-by-step explanation:

Given :

To prove x^3 + \frac{1}{x^3} = 52, if x = 2 + \sqrt{3}

Solution :

We know that,

x = 2 + \sqrt{3},.

Then,

\frac{1}{x} =  \frac{1}{2 + \sqrt{3}}

By taking conjugate,

We get,

\frac{1}{ 2 + \sqrt{3}}\times\frac{2 - \sqrt{3}}{2 - \sqrt{3}}

\frac{2 + \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})}

By using the identity (a + b)(a - b) = a² - b²,

By substituting a = 2 , b = √3,

We get,

 \frac{2 - \sqrt{3}}{(2)^2-(\sqrt{3})^2}}=\frac{2- \sqrt{3}}{4- 3}=2-\sqrt{3}

 \frac{1}{x} = 2 - \sqrt{3}

Hence,

By using (a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2

& (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3

Hence,

(a + b)^3 + (a - b)^3 = 2a^3 + 6ab^2

 x^3 + \frac{1}{x^3} = (x)^3 +( \frac{1}{x})^3 = (2 + \sqrt{3})^3 + (2 - \sqrt{3})^3

Here, a = 2 , b = √3

 (2 + \sqrt{3} )^3 + (2 - \sqrt{3})^3 = 2(2^3) + 6(2)((\sqrt{3})^2) = 2(8) + 6(2)(3) = 16 + 36 = 52

Hence, proved.


sankalp3995: can't understand
Answered by sonikakumari65777
1

I hope it will help you

Attachments:
Similar questions