Math, asked by sallu17, 1 year ago

if X = (2) + underoot (3 )find the
value of( x )square + (1 )upon (X) square answer /SOLVE IT PLEASE/

Answers

Answered by KushagraRaj01
0
x=2√3
x^2+1/x^2=
[2√3]^2+1/(2√3)^2
(2^2+{√3^2}+2×2√3)+(1/2^2+{√3}^2+2×2√3
(4+3+4√3)+1/4+3+4√3
On rationalising
7+4√3+[1/【7+4√3】]×7-4√3/6-4√3
7+4√3+7-4√3/(7)^2-(4)^2(√3)^2
7+4√3+7-4√3/49-(16×3)
7+4√3+7-4√3/49-48
7+4√3+7-4√3/1
On cancellation
7+7
=14

KushagraRaj01: On comparison
KushagraRaj01: 2x-8=2
KushagraRaj01: 2x=2+8
KushagraRaj01: 2x=10
KushagraRaj01: X=10/5
KushagraRaj01: Sry x=10/2
KushagraRaj01: X=5
KushagraRaj01: Hope this helps
sallu17: help me solve a que pls
sallu17: solve equation (find the value of variable in the following) 1- 32° ' 58°
Answered by ShuchiRecites
4
Hello Mate!

x = 2 +  \sqrt{3}  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  = \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  =  \frac{2 -  \sqrt{3} }{4 - 3}  = 2 -  \sqrt{3}  \\  {x}^{2}  =  {(2 +  \sqrt{3}) }^{2}  \\  = 4 + 3 + 4 \sqrt{3}  \\  = 7 + 4 \sqrt{3}  \\  \frac{1}{ {x}^{2} }  =  {(2 -  \sqrt{3}) }^{2}  \\ 4 + 3 - 4 \sqrt{3}  = 7 - 4 \sqrt{3}  \\ 7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}  = 14
Hope it helps☺!
Similar questions