Math, asked by kushagra8347, 10 months ago

if x=2-underoot3 find x³-1/x³ step by step solution​

Answers

Answered by Delta13
1

Given:

x = 2 -  \sqrt{3}

To find:

The value of

 {x}^{3}  -  \frac{1}{ {x}^{3} }

Solution:

x = 2 -  \sqrt{3}  \\  \\  =  >  \frac{1}{x}  =  \frac{1}{2 -  \sqrt{3} }  \\  \\ rationalizing \:  \\  \\  =  >  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  =  >  \frac{2 +  \sqrt{3} }{(2) {}^{2}  - ( \sqrt{3)}  {}^{2} }

By using identity

a² - b² = (a+b)(a-b)

 =  >  \frac{2 +  \sqrt{3} }{4 - 3}  \\  \\  =  >  \frac{1}{x}  = 2 +  \sqrt{3}

Now,

x -  \frac{1}{x}  = 2 -  \sqrt{3 }  - (2 +  \sqrt{3} ) \\  \\  =  > 2 -  \sqrt{3}  - 2 -  \sqrt{3}  \\  \\  =  >  \cancel{2} -  \sqrt{3}  \:  \:  \cancel{ - 2}  \: -  \sqrt{3}  \\  \\ x -  \frac{1}{x}  =   \:   - 2 \sqrt{3}

To find the value of\: {x}^{3}  -  \frac{1}{ {x}^{3} }

we will use the following identity

(x-y)³ = x³ - y³ -3xy(x-y)

=> x³ - y³ = (x-y)³ + 3xy(x-y)

  \small\implies \:  {x}^{3}  -  \frac{1}{ {x}^{3} }  = (x -  \frac{1}{x} ) {}^{3}  + 3 \times  \cancel{x} \times  \frac{1}{ \cancel{x} }(x -  \frac{1}{x} )

Substituting values from above

We have,

x -  \frac{1}{x}  =  - 2 \sqrt{3}

So,

 =  >  {x}^{3}  -  \frac{1}{ {x}^{3} }  = ( - 2 \sqrt{3} ) {}^{3}  + 3 \times ( - 2 \sqrt{3} ) \\  \\  =   - 24 \sqrt{3}    \:  - 6 \sqrt{3}  \\  \\  =  - 30 \sqrt{3}

Hope it helps you.

Mark as brainliest

Similar questions