Math, asked by chetan8569, 5 months ago

If x = 2 + V3, find the value of x2​

Answers

Answered by vishal25791
2

Step-by-step explanation:

x = 2+ √3

therefore

x square = (2+√3)(2+√3)

= 4 + 3 + 4√3

= 7 + 4√3

Answered by Bidikha
6

Correct question -

If \:  \:  x = 2 + \sqrt{3} \:\:  \:  then \:  \: find \:   \:  the \:  \: values \: of \:  {x}^{2}  +  \frac{1}{ {x}^{2} }

Solution -

x = 2 +  \sqrt{3}

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

Rationalising the denominator we will get -

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{(2 +  \sqrt{3} )(2 -  \sqrt{3} )}

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ ({2)}^{2} -  { (\sqrt{3} )}^{2}  }

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{1}

 \frac{1}{x}  = 2 -  \sqrt{3}

Now,

 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

Putting the values -

 =  {(2 +  \sqrt{3} )}^{2}  +  {(2 -  \sqrt{3}) }^{2}

 =  {2}^{2} +  { \sqrt{3} }^{2}   + 2 \times 2 \times  \sqrt{3}  +  ({2}^{2}  +  { \sqrt{3} }^{2}  - 2 \times 2 \times  \sqrt{3} )

 = 4 + 3 + 4 \sqrt{3}  + 4 + 3 - 4 \sqrt{3}

 = 4 + 3 + 4 + 3

 =   14

\therefore \:  \: the \:  \: value \: of \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  \: is \: 14

Similar questions