if x^2-x-1 =0 then what is the value of x^8 + 1/x^8
Answers
Answered by
84
x^8 + 1/x^8 = ?
x^2 - x - 1 = 0 -------(1)
both
x^2/x - x/x - 1/x = 0/x
x^2 - 1/x - 1 = 0
=>
(x - 1/x)^2 = (1)^2
=> x^2 + 1/x^2 - 2(x)(1/x) = 1
=> (x^2 + 1/x^2) = 3
(x^2 + 1/x^2)^2 = (3)^2
=> x^4 + 1/x^4 + 2(x^4)(1/x^4) = 9
=> x^4 + 1/x^4 + 2 = 9
=> (x^4 + 1/x^4) = 7
x^8 + 1/x^8 + 2(x^8)(1/x^8) = (7)^2
=> x^8 + 1/x^8 + 2 = 49
=> x^8 + 1/x^8 = 49 - 2
=> x^8 + 1/x^8 = 47
Hakar:
____No more comment ____
Answered by
68
Given:
- x² - x - 1 = 0
TO FIND:
- x⁸ + (1/x⁸)
SOLUTION:
x² - x - 1 = 0
x² - 1 = 1x
x²/x - 1/x = 1
x - 1/x = 1
S.O.B.S
(x - 1/x)² = 1²
x² - 2(x)(1/x) + 1/x² = 1
x² + 1/x² = 3
SOBS
(x² + 1/x²)² = 3²
x⁴ + 2(x²)(1/x²) + 1/x⁴ = 9
x⁴ + 1/x⁴ = 7
SOBS
(x⁴ + 1/x⁴)² = 7²
x⁸ + 2(x⁴)(1/x⁴) + 1/x⁸ = 49
x⁸ + 1/x⁸ = 47. ( Answer )
Hence, x⁸ + 1/x⁸ = 47
USED FORMULAS:
- ( a + b )² = a² + 2ab + b²
- ( a - b )² = a² - 2ab + b²
Similar questions