If (x−2 ) (x−3) are the factors of x^3 + ax^2+ bx − 30 , find the values of a and b.
Answers
Answered by
0
Answer:
a = - 10, b = 31
Step-by-step explanation:
Substituting value if x = 2 and 3 within the equation x³ + ax² + bx − 30 should result in zero.
When x = 2;
2³ + a*2² + b*2 - 30 = 0
=> 4a + 2b - 22 = 0
=> 2a + b = 11 ------------- [1]
When x = 3;
3³ + a*3² + b*3- 30 = 0
=> 9a + 3b - 3 = 0
=> 3a + b = 1 ------------- [2]
Subtract [1] from [2]
3a + b = 1
2a + b = 11
- - -
---------------------
a = - 10
--------------------
Substitute value of a in [2]
3 * -10 + b = 1
=> -30 + b = 1
=> b = 31.
Similar questions