Math, asked by ansarishahnaz999, 9 months ago

If x-2/x=3, find the value of x cube -8/x

Answers

Answered by Anonymous
5

Solution

Given That:-

  • x - 2/x = 3 ----------(1)

Find :-

  • Value of ( x³ - 8/x³ )

Explanation

Important Formula

(a+b)² = (a² + b² + 2ab)

(a³ - b³) = (a-b)(a²+b²+ab)

So, Squaring both sides of equ(1)

➥ ( x - 2/x)² = 3²

➥ x² + (2/x)² - 2 * x * 2/x = 9

➥ x² + 4/x² = 9 + 4

➥ x² + 4/x² = 13 --------------(2)

So, Now Calculate Value of ( x³ - 8/x³ )

➥ ( x³ - 8/x³ ) = ( x - 2/x)(x² + 4/x² - x * 2/x)

➥ ( x³ - 8/x³ ) = ( x - 2/x)(x² + 4/x² - 2)

Keep Value by equ(1) & equ(2)

➥ ( x³ - 8/x³ ) = 3 * ( 13 - 2)

➥ ( x³ - 8/x³ ) = 3 * 11

➥ ( x³ - 8/x³ ) = 33

Hence

  • Value of ( x³ - 8/x³ ) = 33

___________________

Answered by Anonymous
7

* Answer=33 *

\rule{300}2

Correct Question

* if \large\frac{x-2}{x=3}, find the value of x^2\frqc{-8}{x}.

Given

\large\frac{x-2}{x=3}-------eq(1)

\rule{300}2

* To find *

\large x^3\frac{-8}{x}.

★ Solution ★

→ Squaring both side on \large\frac{x-2}{x=3}

* we get *

\rightarrow \large(x-2/x)^2=3^{2} \\ \rightarrow x^{2}+(2/x)^{2}-2×x×2/x=9 \\ \rightarrow x^{2}+4/x^{2}=13 ------eq(2)

so,

\rightarrow\large x^3\frac{-8}{x}.

\rightarrow \large x^3\frac{-8}{x}= (x-2/x)(x^{2}+4/x^{2}-x×2/x) \\ \rightarrow x^3\frac{-8}{x} = (x-2/x)(x^{2}+4/x^{2}-2)

Putting value in equation (1) and (2)--

 \rightarrow \large x^3\frac{-8}{x} = 3×(13-2) \\\rightarrow x^3\frac{-8}{x}=33 Answer

\rule{300}2

Similar questions